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Abstract

In recent years, a variety of multi-modal mod-
els have been proposed with demonstrable suc-
cess on many downstream language-and-vision
tasks, exhibiting a greater degree of alignment
with human semantic judgments, as well as
brain activations, in comparison to language-
only models (Oota et al., 2022a; Pezzelle et al.,
2021). This research implemented brain encod-
ing models to compare how well these multi-
modal models’ word embeddings align with
semantic network activations in the brain. Of
particular interest was the differential predic-
tive accuracy between concrete and abstract
words. Dual coding theory claims that con-
crete semantic representations involve more vi-
sual information than their primarily linguis-
tic abstract counterparts (Paivio, 1991), and
therefore it was expected that the enhanced
representational alignment conferred by multi-
modality would primarily manifest for concrete,
rather than abstract, words. In line with prior
research by Oota et al. (2022b), findings pre-
sented here provide further empirical evidence
that multimodal embeddings can more accu-
rately predict brain activity than their language-
only counterparts. Notably, the observed dif-
ference in embeddings’ predictive accuracies
between concrete and abstract concepts was un-
expectedly small, suggesting that the enhanced
neural alignment conferred by multimodality
generalizes across both abstract and concrete
words.

1 Introduction

1.1 Dual Coding Theory

First proposed by Paivio (1991), dual coding theory
postulates that information processing in the brain
is implemented across two separate channels: ver-
bal and visual. One suggested manifestation of this
bifurcation is in the distinct semantic encodings
of concrete and abstract concepts, with concrete
concept representations postulated to contain more

visual information and abstract concept represen-
tations thought to contain more verbal information
(Paivio, 1991). fMRI studies have provided some
empirical support for this theory, revealing that
the processing of abstract concepts in the brain is
left-lateralized, while the processing of concrete
concepts is bilateral (Binder et al., 2005). This
experimental finding is consistent with the expec-
tation that concrete words activate anatomically
distinct brain regions not activated during the pro-
cessing of abstract words.

Tang et al. (2021) sought further confirmation of
this theory by constructing a computational model
of how visual and linguistic information could be
integrated to form semantic representations. In
their methodological framework, visual and lin-
guistic representations were first modeled as sepa-
rate concept embedding spaces and later concate-
nated. Comparing encoding model performance be-
tween different semantic embedding spaces, Tang
et al. (2021) demonstrated that the most neurally
aligned embeddings contained a combination of vi-
sual and linguistic information, with more concrete
concepts best modeled by embeddings containing
a higher degree of visual information. Notably,
Tang et al. (2021) also found that even highly ab-
stract concept representations were not purely lin-
guistic, but instead also contained some amount of
visual information, acquired from associated con-
crete concepts. These findings provide the basis
for the experimental investigation presented here,
which compares the neural alignments of embed-
dings generated by transformer-based multimodal
models. Unlike in the semantic embedding spaces
constructed by Tang et al. (2021), in these models,
the integration of visual and linguistic information
is not achieved by mere concatenation, but instead
through more complex cross-modal supervision
mechanisms (Li et al., 2019; Radford et al., 2021;
Tan and Bansal, 2020).



1.2 Symbol Grounding Problem

The symbol grounding problem, first articulated by
Harnad (1990), describes how symbolic represen-
tations of concepts are made meaningful through
their connections to real-world referents. As noted
by Bender and Koller (2020), language models
trained only on linguistic form lack connection to
the real-world referents they denote. This lack of
grounding limits the cognitive plausibility of these
language models. Resolving the symbol grounding
problem is therefore critical for constructing mod-
els that can faithfully replicate the human capacity
for language understanding.

Given this assertion that symbolic representa-
tions, such as language, must be grounded in sen-
sory percepts (Harnad, 1990), word embeddings
generated using multimodal data, rather than lin-
guistic form alone, should provide richer concept
representations that are more faithful replications
of semantic networks in the human brain (Baroni,
2016). Prior work by Pezzelle et al. (2021) pro-
vides some empirical evidence of this. In their
study, Pezzelle et al. (2021) evaluated the extent
to which the embeddings generated by multimodal
transformers align with human semantic intuitions,
finding that the Vokenization model in particular
exhibits robust alignment with human judgments.
Pezzelle et al. (2021) suggest that the model’s
token-level approach to visual supervision may
contribute to more well-defined multimodal word
representations compared to the sentence-level ap-
proach implemented by other multi-modal models.

Meanwhile, work by Oota et al. (2022a) evalu-
ating brain encodings across multiple multi-modal
transformers found that embeddings generated
from VisualBERT (Li et al., 2019) - a single-stream
model which jointly encodes text and visual input
using cross-modal attention - are more predictive
of fMRI responses than, among other multi-modal
transformers, CLIP. CLIP implements separate im-
age and text encoders that are trained jointly to
produce image and text embeddings such that the
cosine similarities between image-text embedding
pairs are maximized (Radford et al., 2021). Given
that these studies evaluated model performance on
different evaluation metrics (alignment with hu-
man judgments vs. fMRI responses), it was un-
certain how the neural alignments of Vokenization-
generated embeddings would directly compare to
those of VisualBERT or CLIP - each of which im-
plement a different approach to visuo-linguistic

information integration. This was one particular
line of inquiry that motivated the present work.

2 Related Work

The implementation of brain encoding models to
predict fMRI responses has become an increasingly
frequent methodological technique in recent years,
particularly in the research programme of com-
putational cognitive neuroscience. Earlier studies
primarily implemented encoding models that pre-
dict brain activity from representations of single-
mode stimuli, either visual or text (Allen et al.,
2022; Schrimpf et al., 2021). Yet the human brain
processes inputs from diverse modalities, such as
vision and audio, in parallel. Therefore, brain en-
coding models trained on multimodal data should
provide a richer account of how the brain integrates
multiple channels of sensory information to con-
struct grounded semantic representations.

Prior work by Pereira et al. (2018) provided this
multimodal dataset, and the functional magnetic
resonance imaging (fMRI) data collected in that
study was used in the present work for brain en-
coding analysis. In the original fMRI study, sub-
jects were asked to read a word and think about
its meaning in the context of either sentences or
pictures. Pereira et al. (2018) implemented single-
concept decoding, investigating the extent to which
300-dimensional semantic vectors (representations
derived using GloVe) could be decoded from brain
imaging data. These subject-specific decoding
models were trained on the 5000 most informa-
tive fMRI voxels. The "informativeness" score of
each voxel was determined using a ridge regres-
sion model, with more informative voxels yielding
higher correlations between predicted and true val-
ues for each semantic vector dimension. Pereira
et al. (2018) found that the most informative voxels
were distributed across 4 networks: (i) frontotem-
poral language-specific network, (ii) the default
mode network (DMN), (iii) task-positive (TP) net-
work, (iv) vision network. The highest degrees
of predictive accuracy observed by Pereira et al.
(2018) were in the language and vision networks,
which were the regions subsequently selected for
the brain encoding analysis presented here.

Recent work by Wang et al. (2022) demonstrated
that the multimodal transformer model CLIP (Rad-
ford et al., 2021) better encodes neural responses in
the visual cortex in comparison with unimodal mod-
els such as BERT or ImageNet-trained ResNet. In



this study, Wang et al. (2022) extracted image fea-
tures generated from CLIP, which encodes visual
concepts via supervision from natural language cap-
tions. CLIP jointly trains an image encoder and
text encoder to maximize the cosine similarity be-
tween corresponding image and text embeddings,
using a linear projection to map each encoder’s
representation to a multi-modal embedding space
(Radford et al., 2021). Wang et al. (2022) then used
voxelwise encoding models based on these CLIP
features to predict brain responses to real-world
images from the Natural Scenes Dataset. It was
found that CLIP explains greater unique variance
in higher-level visual areas compared to models
trained only with image/label pairs (ResNet) or
text (BERT).

3 The Present Work

In this work, word embeddings extracted from
transformer-based models (RoBERTa, CLIP, Visu-
alBERT, Vokenization) were mapped to voxelwise
activations via a brain encoding model to compare
the representational alignments of these embed-
dings with fMRI responses. The present work built
on the prior encoding study of Oota et al. (2022a)
by expanding the set of multimodal transformers
to be evaluated to include the Vokenization model
(Tan and Bansal, 2020), found to be the best per-
forming model in the aforementioned research con-
ducted by Pezzelle et al. (2021). This research
further extends the work conducted by Oota et al.
(2022a) by comparing brain encoding performance
across different perceptual contexts (linguistic vs.
visual processing). While Oota et al. (2022a) re-
stricted their brain encoding analysis to the pictures
context, the present work compares brain encod-
ing performance across both experimental contexts
used by Pereira et al. (2018) (pictures & sentences).
The final extension of Oota et al. (2022a)’s research
introduced in this work is the comparison of brain
encoding performance between concrete and ab-
stract words. In summary, this work aimed to in-
vestigate:

(a) whether multi-modal transformers have
higher accuracy than text-only models in predicting
brain activity,

(b) whether this higher predictive accuracy only
holds for concrete concepts,

(c) if the addition of visual information to em-
beddings improves their predictive accuracy for
visual brain regions

(d) if the Vokenization model (best-performing
in Pezzelle et al. 2021) has greater predictive ac-
curacy than VisualBERT (best-performing in Oota
et al. 2022a),

(e) whether the type of context (pictures vs. sen-
tences) in which each target word is presented af-
fects the encoding models’ predictive accuracy.

This research sought to provide empirical sup-
port for both Harnad’s assertion of the necessity
of symbol grounding and Paivio’s dual coding the-
ory by investigating whether multimodal models,
compared to a text-only model (RoBERTa), indeed
achieve higher predictive accuracies for concrete
words in comparison to abstract words.

As described previously, grounded cognition the-
ories claim that a concept’s semantic representation
is constructed using associated perceptual informa-
tion (Harnad, 1990). Yet distributional word em-
beddings’ success - despite their lack of perceptual
access to real-world referents - suggests that suf-
ficiently functional semantic representations can
be learned from language alone (Patel and Pavlick,
2021). However, dual coding theory claims that the
robustnes of these embeddings can vary depending
on whether the represented concept is abstract or
concrete. In this theoretical formulation, concrete
concept representations are postulated to contain
a high degree of visual information (Paivio, 1991).
Therefore, multimodal embeddings of concrete con-
cepts were expected to achieve a greater degree of
neural alignment compared to their unimodal (text-
only) counterparts. On the other hand, dual coding
theory claims that abstract concepts are represented
primarily by linguistic information. In this case,
unimodal embeddings for abstract concepts should
were expected to achieve comparable predictive
accuracies with their multimodal counterparts.

4 Brain Imaging Dataset

The present study used fMRI data collected and
preprocessed by Pereira et al. (2018) to train brain
encoding models. While the Pereira et al. (2018)
study implemented a decoding model, the present
study inverted this paradigm - rather than predicting
semantic vectors from voxel activations, here voxel
activations were predicted from semantic vectors.
The Pereira et al. (2018) dataset is comprised of two
experimental contexts: (1) linguistic stimuli (sen-
tences) and (2) visual stimuli (pictures). In each
context, participants were shown a concept word
alongside the contextual stimuli (either sentences



or pictures) with the aim of observing brain acti-
vation when participants retrieved relevant word
meanings using the contextual information. In the
original Pereira et al. (2018) study, 15 subjects were
presented the stimuli (6 sentences/images) corre-
sponding to 180 concepts. In their study, fMRI
data was processed using the FMRIB software
library (FSL). Data each scanning session were
corrected for motion, slice timing, and bias field
inhomogeneity (Pereira et al., 2018). Further tem-
poral pre-processing included high-pass filtering,
in which low-frequency noise is removed from the
data. Blood oxygenation-level dependent (BOLD)
data collected by Pereira et al. (2018) for each sub-
ject in each scanning session was represented with
a matrix of 96 x 96 voxels. Given that the most
informative (predictable) voxels were located in
the vision and language networks, these were the
regions of interest selected in the brain encoding
analysis presented here.

S Methodology
5.1 Abstract/Concrete Word Designation

Given that the present study aimed to investigate
the comparative model performances between con-
crete and abstract words, the original set of 180
words was reduced to 132 words (63 abstract,
69 concrete). Each word’s designation as ab-
stract/concrete was established by its behaviorally-
determined concreteness score, based on data col-
lected by Brysbaert et al. (2014), in which partici-
pants assigned concreteness ratings (ranging from
1-5) to presented words. The delineation between
abstract/concrete for the particular set of words
presented in the Pereira et al. (2018) study was
achieved by first calculating the mean concreteness
score within the original word list and subsequently
defining concrete words as all words half a standard
deviation above the mean and abstract words as all
words half a standard deviation below (Hendrikx
and Beinborn, 2020).

5.2 Pre-trained Transformer Embeddings

5.2.1 Text-only Baseline

RoBERTa only encodes text stimuli. Similar
to its predecessor BERT (Devlin et al., 2018),
RoBERTa is trained using a masked language ob-
jective, in which the model is tasked with predict-
ing the original vocabulary ID of the masked token
based only on its context (Liu et al., 2019). In this
way, the model learns contextualized word repre-

sentations. Given that each word occurred in 6
different contexts (sentences), the 6 corresponding
vector outputs were averaged to generate a single
static embedding for each word. This context com-
bination mechanism, in which multiple contextual-
ized vector representations are collapsed to a single
static representation, is similar to the aggregation
method first proposed by Bommasani et al. (2020)
and also implemented by Pezzelle et al. (2021).

5.2.2 Multi-modal transformers

CLIP projects both text and visual features to a
latent space, whereby both textual and image em-
beddings have identical dimensions, such that the
dot product between the projected image and text
features can then be calculated and used as a simi-
larity score, with the objective of maximizing this
value (Radford et al., 2021). As with RoBERTa,
the average across each set of 6 vector representa-
tions was taken to generate a single embedding per
modality (language and vision). Given that CLIP
generates separate embeddings for image and text
features, to construct a joint representation, the
element-wise multiplication fusion technique was
implemented (Jaafar and Lachiri, 2023).

VisualBERT implicitly aligns elements of the
input text and regions in the input image via self-
attention (Li et al., 2019). Visual embeddings are
computed by summing three embeddings: (a) a
visual feature representation of the bounding re-
gion, computed by a convolutional neural network,
(b) a segment embedding indicating it is an im-
age embedding, and (c) a position embedding (Li
et al., 2019). Following the methodological im-
plementations of (Oota et al., 2022a), the visual
feature representation was comprised of region pro-
posals as well as bounding box regression features
extracted from Fast R-CNN (Ren et al., 2015) as
image features. Multimodal embeddings are gener-
ated by aligning these vision embeddings with text
input (sentences). As with the other models, the
average across 6 vector representations was used to
generate a single multimodal embedding for each
concept.

Vokenization While the aforementioned multi-
modal models apply natural language supervision
to vision, Vokenization (Tan and Bansal, 2020) is
a visually-supervised language model. This model
incorporates a novel technique "vokenization" that
extrapolates multimodal alignments to language-
only data by contextually mapping language tokens



to their related images ("vokens"). Supervised by
these generated vokens, significant improvement
over the purely self-supervised language model on
multiple language tasks has been observed (Tan
and Bansal, 2020). Consistent with the embedding
extraction methodology for the other models, given
6 input sentences per word, a single multimodal em-
bedding is generated by taking the average across
each contextualized representation.

5.3 Encoding Models

In line with the methodological framework imple-
mented by Oota et al. (2022a), fMRI encoding mod-
els were trained using ridge regression to predict
fMRI brain responses (collected by Pereira et al.,
2018) for regions of interest activated in response
to presentation of concept stimuli - sentences or
pictures associated with target concept. The objec-
tive of each ridge regression-based encoding model
was to predict fMRI voxel activations given an in-
put embedding. These embeddings were obtained
using multi-modal transformers, and, for compari-
son purposes, a pre-trained text transformer. The
following brain networks were selected as regions
of interest (ROIs): language - left and right hemi-
spheres (regions include: lateral medial temporal
gyrus, lateral prefrontal temporal gyrus, lateral in-
ferior temporal gyrus) vs. vision - body, object,
face, scene (regions include: primary visual cor-
tex, fusiform body area, lateral occipital cortex,
fusiform face area, parahippocampal place area)
(Oota et al., 2022a). Given that these brain regions
can be divided into those that specialize in visual
processing and those that specialize in linguistic
processing, it was expected that the predictive ac-
curacies across these brain regions would be influ-
enced by the experimental context (sentences vs.
pictures). To train and test from a single dataset
(BOLD data for 1 subject), K-fold (K=10) cross-
validation was implemented, in which all the data
samples from K-1 folds were used for training,
and evaluation was performed using samples of the
left-out fold. Given that there were 15 subjects
(N=15) in the original study, resulting in 15 sets of
fMRI data, 2V2 accuracy scores for each ROI were
averaged across participants to generate a mean
predictive accuracy for each ROL

5.4 Evaluation Metric: 2V2 Accuracy

Using the evaluation methodology implemented by
Toneva et al. (2020), given 2 left-out samples, with
predictions bl and b2 and corresponding ground

truth (observed voxel activations) B1 and B2, 2
scores are calculated: scorel is computed as the
sum of the cosine distances between (b1, B1) and
(b2,B2) and score 2 is computed as the sum of the
cosine distances between (b1 and B2) and (b2, B1).
This score 2 corresponds to random prediction, as
the predicted activation of voxel 1 should be closer
to the observed activation of voxel 1, rather than
an independent voxel 2. An indicator function is
applied that returns 1 if scorel < score2 and 0
otherwise. In this evaluation metric, chance perfor-
mance is 0.5.

6 Results

6.1 Inter-Model Comparison: Multi-Modal vs.
Text-Only

Presented in Fig. 2 are the 2V2 accuracy results for
each model (RoBERTa, CLIP, VisualBERT, Vok-
enization), across both abstract and concrete word
sets. As expected, multi-modal models do indeed
outperform the text-only ROBERTa. In particular,
multimodal models CLIP and VisualBERT achieve
higher predictive accuracies in vision areas (Object,
Body, Face, Scene). In each set of words (abstract
& concrete) in the sentences context, CLIP embed-
dings outperform those of ROBERTa, VisualBERT
and Vokenization. In the pictures context, how-
ever, VisualBERT embeddings outperform those of
CLIP in visual regions.

A higher correlation across the visual and lan-
guage brain regions achieved by multi-modal em-
beddings demonstrates that the integration of vi-
sual and linguistic representations indeed increases
neural alignment. Multi-modal transformers out-
perform the baseline across all 7 regions of interest
(language-left hemisphere, language-right hemi-
sphere, vision-primary, vision-body, vision-face,
vision-object, vision-scene). Interestingly, in the
pictures context, Vokenization’s performance is no-
tably lower than the other multimodal models. This
comparatively poor performance might be a conse-
quence of Vokenization’s visually-supervised ap-
proach to language processing. While this learning
mechanism may improve its performance on lin-
guistic tasks, Vokenization’s embeddings may be
comparatively poorer representations of visual in-
formation.

6.2 Abstract vs. Concrete

The 2V2 accuracies of multimodal embeddings for
abstract words words was greater than anticipated,
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Figure 1: Inter-model comparisons of predictive accuracy between pictures (left) and sentences (right) paradigms for
brain regions involved in visual scene perception (PPA). 2V2accuracy for RoOBERTa and Vokenization embeddings
does not appear to be influenced by the experimental context (pictures vs. sentences), while for both CLIP and
VisualBERT embeddings, there is a consistent drop in accuracy from picture to sentence stimuli. In the sentences
paradigm, Vokenization outperforms VisualBERT; however, note that this predictive accuracy is still poor (< 0.5).

with no notable differences from the 2V2 accura-
cies for concrete words. Furthermore, this similar-
ity between predictive accuracies for abstract and
concrete word embeddings held for brain regions
involved in visual processing. As noted previously,
the results of Tang et al. (2021) indicate that even
highly abstract concepts should contain some vi-
sual information, due to their linguistic associations
to concrete words. These findings suggest that ab-
stract concepts are perhaps more visually grounded
than originally described by dual coding theory.

This enhanced neural alignment of multimodal
representations, which generalizes across concrete
and abstract words, may be a consequence of the
inherent multimodality of meaning - cortical rep-
resentations of even highly abstract concepts may
involve some degree of visual information. While
this is consistent with the aforementioned results
from Tang et al. (2021), this finding is harder to rec-
oncile with the original implications of dual coding
theory, which suggested a stronger bifurcation of
visual & linguistic information between concrete
and abstract word representations. However, it is
also important to note that the 2V2 evaluation met-
ric used in the present work is not a direct measure
of fMRI responses that would enable comparison
between neural activity across brain regions. There-
fore, it could still be the case that abstract words
yield higher activations in the language network
than in the vision network (and vice versa for con-
crete words). While this would be a worthwhile

neuroimaging study, as a brain encoding analysis,
this is beyond the scope of the present work.

6.3 Language vs. Visual Brain Regions

As can be observed in Fig. 2, multimodal mod-
els yielded higher predictive accuracies than the
unimodal model in visual brain regions (ROIs are
listed along the x-axis of each subplot). Inter-
estingly, and unexpectedly, this enhancement ex-
tended for both abstract and concrete words. Fur-
thermore, compared with the text-only model, the
multimodal models also achieved a higher predic-
tive accuracy in brain regions involved in linguistic
processing. Again, this improvement manifested
for both abstract and concrete words.

While multimodal embeddings’ enhanced pre-
dictive accuracy was observed in both language
and visual brain regions, this enhancement was
not necessarily equal across both brain networks.
In the pictures context, embeddings from CLIP
and VisualBERT (the two best-performing mod-
els) have higher predictive accuracy in visual brain
regions than in language regions. For both mod-
els, activation of brain regions responsible for vi-
sual scene perception (PPA) was most predictable.
The enhanced encoding performance in this region
in particular is noteworthy, because this type of
high-level visual processing involves the percep-
tion and identification of real-world referents, and
thus would be highly relevant for symbol ground-
ing.
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Figure 2: Model performances across brain regions for abstract (left) and concrete (right) words. The predictive
accuracy of RoBERTa and Vokenization embeddings does not change notably across brain regions. However, both
CLIP and Visual BERT exhibit greater predictive accuracy in higher-order visual regions (for both abstract and
concrete words). While there is no notable difference across abstract and concrete words, it is observed that the type
of stimuli (pictures vs. sentences) does impact the 2V2 accuracy of CLIP and VisualBERT.



While it is intuitive that visual brain region ac-
tivation would be more predictable in the pictures
context, it was expected that this enhanced pre-
dictability would be restricted to concrete words.
However, this higher predictability in visual brain
regions extended to both concrete and abstract
words. Notably, this differential predictive accu-
racy between language and visual brain regions is
not observed in RoBERTa or Vokenization, both
of which achieved comparatively poor predictive
accuracy in the pictures context.

6.4 Vokenization vs. VisualBERT

The comparatively poor predictive accuracies (<
0.5) across brain regions of the Vokenization-
generated embeddings seem contrary to the results
of Pezzelle et al. (2021). That study implemented
a judgment-based evaluation metric, in which per-
formance was measured by the alignment between
embeddings and concreteness ratings derived from
human judgments (Brysbaert et al., 2014). The
findings presented here suggest that this concrete-
ness rating cannot be inferred from the fMRI re-
sponses collected by Pereira et al. (2018). Perhaps
this reflects that the tasks from the two studies
were fundamentally incomparable, involving dis-
tinct modes of processing. Unlike the Pereira et al.
(2018) task, which involved multi-modal process-
ing of both visual and linguistic stimuli, the task
of assigning concreteness scores to words is funda-
mentally a linguistic one. Even though the origi-
nal Brysbaert et al. (2014) study defined concrete
words as words that can be experienced "directly
through one of the five senses" - a definition which
suggests some invocation of multimodal perception
- the only stimuli presented to the raters in this clas-
sification task was text. Therefore, given this con-
textual difference between the original Brysbaert
et al. (2014) rating task and the study presented
here (unimodal vs. multimodal stimuli), a more
valid analysis of the Pezzelle et al. (2021) study
and the present findings would restrict comparison
to the sentences (linguistic-only stimuli) context.
Indeed, in this context, Vokenization does outper-
form VisualBERT. However, even in this context,
for each ROI, Vokenization-generated embeddings
still yield poor predictive accuracies (< 0.5). No-
tably, in this unimodal (sentences) context, CLIP-
generated embeddings are the only representations
to yield predictive accuracies greater than 0.5. It
should be pointed out that the original Pezzelle

et al. (2021) study does not include a comparison
with CLIP-generated embeddings, so it is uncer-
tain whether these embeddings would also be more
aligned with human-derived concreteness scores.

While Vokenization-generated embeddings may
have been slightly more neurally aligned than Vi-
sualBERT embeddings in the sentences context,
this did not hold in the pictures context. Instead,
VisualBERT-generated embeddings were more pre-
dictive of visual brain region (body, face, scene,
V1) activations than both Vokenization and CLIP
embeddings. This is consistent with the findings of
Oota et al. (2022a). However, Oota et al. (2022a)
also observed this enhanced predictive accuracy
in the language (both left and right hemisphere)
regions, which is not replicated here. Instead, the
present findings show that, in both language re-
gions, CLIP-generated embeddings yield the high-
est predictive accuracies. This inconsistency could
be explained by the differences in data sets. In
the present study, the original word list of 180 was
reduced to 69 (concrete word encoding) and 63
(abstract word encoding). Therefore, the superior
neural alignment of CLIP-generated embeddings
observed here may not necessarily be a reflection
of a more cognitively plausible neural network ar-
chitecture or objective function, but may merely be
a consequence of the highly data-dependent nature
of brain encoding analyses.

6.5 Sentences vs. Pictures

As can be observed in Fig. 1, while the predictive
accuracy of both RoOBERTa and Vokenization em-
beddings did not notably change between context
types, CLIP and VisualBERT embeddings were
better at predicting brain activations in the pictures
task compared to the sentences task. This stimuli-
dependent difference is consistent with the original
findings of Pereira et al. (2018). In their study, pair-
wise accuracy of their decoding models was higher
for the pictures paradigm than sentences.

It is worth remembering here that the text com-
ponents of the multimodal embeddings were gen-
erated from sentence-level contextualizations. But
in the Pereira et al. (2018) pictures experimental
context, each word was essentially a static rep-
resentation, presented with no linguistic context.
Therefore, in this experimental paradigm, static
word embeddings generated from GloVe (Penning-
ton et al., 2014) - which uses word co-occurrence
statistics, rather than a sentence-level contextual



window - might have had a greater degree of repre-
sentational alignment with the neural responses in
the language network of the brain. Indeed, this was
the word embedding method implemented for the
original Pereira et al. (2018) brain decoding study.
However, in another sense, these presented words
were indeed contextualized, but this contextualiza-
tion was provided in the form of visual, rather than
linguistic, data. Given that CLIP- and VisualBERT-
generated embeddings still achieved higher pre-
dictive accuracies for language-processing regions
in the pictures context rather than the sentences
context, it does not appear that this distinction neg-
atively affected the embeddings’ neural alignment.

One speculative explanation for the compara-
tively poor predictability in the purely linguistic
(sentences) task could be that linguistic processing
in the brain is comparatively diffuse, comprised of
both functionally specialized and domain-general
networks, and therefore activates an extensive
range of subregions. (Fedorenko and Thompson-
Schill, 2014). This heterogeneity could limit pre-
dictability in purely linguistic contexts.

7 Discussion

7.1 Cognitive Implications: Visuo-Linguistic
Semantic Representations

While multi-modal embeddings did have greater
predictive accuracy than the text-only baseline,
there was no notable difference in accuracy be-
tween abstract and concrete words. In other words,
multi-modal embeddings were no more predictive
of concrete than abstract words, contrary to the
hypothesis that the increase in accuracy will be
primarily restricted to concrete words, given the
assumption that abstract word representations in-
volve little visual information. This similarity in
predictive accuracies between abstract and concrete
words held across both experimental contexts (pic-
tures and sentences).

The finding that this similarity also held in the
pictures context is particularly surprising after tak-
ing into account the significant differences between
the corresponding image sets for abstract and con-
crete words. For example, the word "ball" has one
of the highest concreteness ratings in the Pereira
et al. (2018) word list, with a concreteness score
of 5.0. Its corresponding images - 3 of which are
displayed in Fig. 3 - are characterized by a high de-
gree of similarity, particularly in comparison to the
set of images corresponding to the highly abstract

word "typical" (concreteness score = 1.52). The
high degree of variance between the abstract im-
ages would be consistent with the assumption that
abstract concept representations contain primarily
linguistic information, as the corresponding visual
stimuli appear to be less informative than that of
concrete concepts. Yet, the findings presented here
seem to contradict those intuitions. The compar-
atively disparate visual information conveyed by
the set of corresponding abstract images appear
to have little negative effect on the predictive ac-
curacy of their visio-linguistic embeddings, with
little difference in 2V2 accuracy between abstract
and concrete concepts. Furthermore, the predic-
tive accuracy of CLIP and VisualBERT’s visuo-
linguistic embeddings is actually higher in the pic-
tures paradigms.

7.2 Natural Language-Supervised Vision
Models vs. Visually-Supervised Language
Models

The superior predictive accuracy of CLIP is con-
sistent with prior findings from Wang et al. (2022).
Their findings indicate that CLIP is much more
accurate than single modality models at predict-
ing brain activation in higher-level visual regions.
Multimodal loss signals from CLIP’s final layer
are propagated through all earlier layers of both
the visual and language encoders (Radford et al.,
2021). Wang et al. (2022) speculate that this may
render CLIP a more faithful approximation of hu-
man visual processing by endowing the model with
some degree of top-down knowledge that is able
to influence earlier layers of visual input. This
top-down influence of language on vision is appar-
ent in humans during category learning (Conwell
et al., 2022). The findings of Wang et al. (2022),
combined with the present study’s demonstration
of CLIP embeddings’ superior predictive accuracy,
provides some compelling evidence that supervi-
sion from natural language leads to representations
that are more predictive of cortical activation in
high-level visual regions.

On the other hand, the comparatively poor pre-
dictive accuracy of the Vokenization model - a
visually-supervised language model - suggests that
perhaps the transfer of visual information to lan-
guage processing is less robust than the trans-
fer of linguistic information to visual processing.
CLIP and Visual BERT’s differential predictive ac-
curacy between the sentences and pictures con-
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Figure 3: Subset of corresponding images from Pereira
et al. (2018) dataset for abstract word "typical" (top)
and concrete word "ball" (bottom)

texts may also be explained by this. This com-
paratively high predictive accuracy in the pictures
paradigm suggests that multimodality (specifically,
that achieved using the CLIP or VisualBERT ar-
chitecture) may be more useful in visual, rather
than language, processing. Nevertheless, the su-
perior accuracy of each of the multimodal (CLIP,
Visual BERT, Vokenization) embeddings over the
unimodal (RoBERTa) embeddings across both (pic-
tures & sentences) contexts confirms that multi-
modality does improve neural alignment for both
visual and linguistic processing. However, these
results indicate that the type of cognitive process-
ing being performed may affect the degree of this
improvement, with a greater degree of representa-
tional alignment in visual, rather than purely lin-
guistic, contexts.

8 Limitations

The present study’s exploration of multimodal-
ity could be further extended to include multi-
modal models that integrate audio information as
well, such as Akbari et al. (2021)’s recently pro-
posed Video-Audio-Text Transformer (VATT). The
present work’s language data consists only of text.
This limits the study’s examination of linguistic
processes to reading - a fundamentally visual task.
The addition of audio information may facilitate the
construction of richer visio-linguistic representa-
tions, which may yield higher predictive accuracies
for language processing regions in the brain.

As mentioned previously, GloVe embeddings
could have been also used as an additional text-
only baseline. This modification would have also
enabled comparison of neural alignment across an-
other dimension: word co-occurrence vs. sentence-
level contextualization derivations of text embed-
dings.

Overall, the comparison presented here between
multi-modal models is worthy of more in-depth
investigation. Model architecture and objective
function alone cannot account for the observed dif-
ferences in predictive accuracy because these mod-
els also differ in the size of their training datasets.
As observed by Conwell et al. (2023), the training
dataset is also a determinative factor in a model’s
alignment with neural data. Further experimental
work involving controlled comparisons (in which
the training dataset is held constant) between multi-
and uni-modal models are warranted. Necessar-
ily, this would restrict comparisons to models that
share the same training data. However, this line of
research will be crucial to isolating whether mul-
timodality indeed is responsible for multimodal
models’ enhanced alignment with neural data.

9 Conclusion

The comparatively high predictive accuracy of
CLIP embeddings observed in this study prompts
speculation into whether its objective function of
maximizing the cosine similarity of image-text rep-
resentations is a reasonable approximation of the
brain’s construction of semantic representations.
The superior predictive accuracy of CLIP embed-
dings observed in this study is consistent with cur-
rent research trends in multimodal modeling, in
which the use of contrastive language alignment to
facilitate more robust predictions of activations in
visual processing regions of the brain is widespread
(Conwell et al., 2022).

The lack of difference in 2v2 accuracy between
concrete and abstract word embeddings is surpris-
ing, as it seems to violate the prior assumption
that abstract word representations contain primar-
ily linguistic information. Given these prior claims
from dual coding theory, the expectation was that
multimodal embeddings of abstract words would
not necessarily be made more predictive of brain
activation by virtue of including visual informa-
tion. The results presented here seem to suggest
that incorporating visual information into word em-
beddings increases their representational alignment
with cortical activations regardless of the concept’s
abstractness.

While current discourse surrounding the ques-
tion of whether language models require ground-
ing for understanding has yet to be definitively re-
solved (Patel and Pavlick, 2021; Pavlick, 2023), the
findings presented here provide further empirical



support for the grounded cognition argument that
multimodality should enhance the neural alignment
of models’ semantic representations. Multimodal
embeddings achieved higher predictive accuracies
than unimodal embeddings across all contexts (pic-
tures and sentences), across all brain regions, and
notably, across both abstract and concrete word
types. This finding suggests that the enhanced neu-
ral alignment achieved by multimodality does not
manifest solely for concepts that are easily visual-
ized, but instead generalizes across both concrete
and abstract words.

10 Data Accessibility

Code is made available at https://github.

com/torreysnyder/Multimodal-Brain
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